
07/12/2022 1

Mini Retro Chip Tester

07/12/2022 2

ABOUT

● The Mini Retro Chip Tester was first thought of a few years ago.
Since that time I have been working on other projects and the
tester off and on. Finally, I have a prototype. This tester will allow
you to test all of the chips already on the tester and you can also
update the chip database with other similar chips. However,
because I have decided to make it more powerful, I will not be
updating the chip database myself. The good news is, if you have
a certain chip you’d like to add to the database it is fairly easy to
do. With that, let’s go over how this chip tester works.

07/12/2022 3

Start Up

● When you first turn the tester on you will see the Kosciusko Media
logo. It does not purposely stay up for a specific length of time.
While this logo is showing all of the chips in the database are
being loaded. Therefore, the more chips in the database, the
longer this logo will show.

07/12/2022 4

Menu Screen

● After all of the chips are loaded into
memory, the menu screen will appear.
You have the option to [Start], go to
[Settings], or to [Update] the chips
database. Let’s look at [Settings] first

07/12/2022 5

Settings

● The settings screen gives you a few
options.

● Lbit – Uses only 0 and 15 when using a
random test function on 4 bit RAM.
Where as normal mode is to use 1
through 15. It reduces time while still
putting either a 0 or a 1 in each bit.

● SToF – Stop on Fail. This will end the
test automatically if any address fails.

07/12/2022 6

Settings

● SBBA – Show Bad Bit Address. This
will stop the test and show you the
column and row of a bad bit or word
address. It will renew the test after 2
seconds unless you have SToF
enabled.

● WFSD – Write Failures to SD. This will
write the bad address of a RAM chip to
an SD card based on the file name
given when you select [File].

07/12/2022 7

Settings

● TLED – Test LED. Turns LED that
flashes during testing on or off.

● File – Clicking this will open a new
screen to select the file name to save
bad addresses to.

● Exit – This exits [Settings]

07/12/2022 8

File Name

● To choose a file name open the [File] screen and use the [UP]
button to choose a letter or a number. Up will scroll from A to 9
and then restart at A. Once you have a letter selected, push the
[DN/Right] button to move to the next character slot. Once you
have chosen a file name move to [SAVE] and click the [Enter]
button on the device. You can then exit.

● **Please note one of the reasons this project is being redesigned is because of the low power. Sometimes the
SD reader will not work. There is nothing to be done if it doesn’t. That is why this tester is cheaper than originally
planned. If you must have an SD save function or the ability to update the chips via SD then this will not be the
tester for you.

07/12/2022 9

Update

● This was originally planned as a way to update the chip database
via SD. Unfortunately, this design has a flaw. It should have been
designed with more power in mind. That being the case, some
times the SD reader will not work, though it often does. So, if you
want to update the chip database there is a program you can use
with the Arduino IDE and an Arduino Nano to update the database
in that manner. Instructions are further in this document.

07/12/2022 10

Start Testing

● When you select [Start] a new
screen will open that shows all of
the chips in the data base. Use the
Up and Down button on the device
to choose which chip you want to
test. Do not use the wrong chip,
although you are unlikely to cause
any damage because most of each
chip’s pins are made for 5v you
might send voltage to a pin that
can’t accept it. So be aware.

07/12/2022 11

Test Select

● This section applies to RAM only. After you have selected the chip
you want to test a new screen will show that allows you to select
the type of test you want to run. One thing to keep in mind is that
using faster tests won’t make any difference with 1 bit RAM chips
as each ram address can only be either a zero or one. The tester
will test each one of these individually. If you are using 4 bit RAM
then selecting different types of tests will make the tests faster as
you can either test each address by counting from 1 to 15,
counting each of the four bits individually, or simply testing the
address for either 0 or 15.

07/12/2022 12

Test Select

The following are the RAM test
types.

● Full – This will count and test 0-
15 at each address (4 bit).

● Med – This will test for a 0 and 1
at each address (4 bit).

● Rand – This will test a random
address (column and row) as
many times as there are
columns

07/12/2022 13

Test Select

● R-Row – This will test start with
column zero and go to the last
column and test a random row
each time.

● Quik – This will test each
address with either 0 or 15. The
fastest non-random test. (4 bit)

07/12/2022 14

Testing

● During the test each address will be
tested for either a 0 or 1 based on the
RAM type and the test selected.
Some larger RAM chips can take
quite a while to finish testing. This is
another limitation with this design and
future designs will use a different
micro-processor but at a higher cost.

07/12/2022 15

Testing

When the test has finished it will show
whether the chip was good or how
many bad addresses there were
based on your settings. If you have
SToF checked, then the test will end
as soon as it fails. You can also stop
the test at any time by clicking the
back button on your device.

07/12/2022 16

7400 Series Testing

You can test several 7400 series chips as well. You can also add
others if they are similar in design. As of now, you can test NAND,
NOR, AND, OR, XOR, Inverters, Parallel-In shift registers and
Serial-In shift registers. The complete list of testable chips is at
the end of this document.

07/12/2022 17

7400 Series Testing

Testing logic gates.

When you test a logic gate there is no
“test over” screen. It simply shows you if
each gate is functioning properly as it
goes along. It gives you time to see the
results as the test is being conducted and
once the test is finished. Once done, you
will return to the Menu Screen.

07/12/2022 18

7400 Series Testing

Testing shift registers

When you test a shift register it will be
tested based on the size of the bus. If
the bus size is 8 then the test will count
from 0 to 255 testing each input and
output pin along the way. Once this test
is done you will see the pass or fail
screen.

07/12/2022 19

Updating

Because these boards were a trial and there are plans to redesign
them, I will not be doing any updates myself. They are cheaper
than originally planned because of that. Also, I am including the
code to download and also a program to add new chips to the
eeprom located on the pcb. You will need to reflash the testing
program after you update the eeprom. You are also welcome to
change the code of the main program to your liking.

07/12/2022 20

Updating

First we will go over how to update in general then we will go over
how the chip database is laid out so that you can add chips to it if
you’d like. **Note: the chips will have to follow certain types of
layouts to be able to be added and tested.

● First – You need an Arduino Nano. They are quite cheap at
around $4-$5.

● You also need the Arduino IDE software. This is free and easy to
find online. Just download that and install.

● You will also need an add-on for the Arduino IDE called
MegaCoreX.

07/12/2022 21

Updating

To get MegaCoreX you can simply go to Tools/Manage Libraries
within Arduino and search for MegaCoreX. Once you have found
it, install it.

Next you will need to install jtag2updi. Which can be found HERE
This will be installed onto your Arduino Nano to make it a UPDI
programmer. Simply go to where you downloaded jtag2updi and
open the Arduino file (.ino). Once you have opened it plug your
Nano into your computer and press the upload button. This will
install jtag2updi onto your Nano.

https://github.com/ElTangas/jtag2updi

07/12/2022 22

Updating

Now you can open up the eeprom chip updater or the main
program to install them onto your tester. If you are updating the
eeprom chip data base you will have to reinstall the main program
afterwards. But before you can update the tester you need to
change some settings in the Arduino IDE.

When updating the tester you will need to go to
Tools/boards/MegaCoreX and select Atmega4809. After you have
done that change [CLOCK] to 20Mhz and change the
[Programmer] to jtag2updi.

07/12/2022 23

Updating

There is only one more step. You will now connect a wire from the
Arduino 5v pin to the 5v pin on the bottom left of the tester (the
top pin of the three). You will also need to add a wire from the
arduino GND pin to the middle pin of the bottom three on the
tester. Finally, you need to connect a wire from pin D6 on the
Nano to the bottom pin of the three on the bottom of the tester.
This will allow you to upload the code from the Arduino IDE and
Nano to the chip on the tester board. With that done you can cane
open up one of the files either the eeprom updater or the main
program and click on upload and the tester will be updated.

07/12/2022 24

Updating

One more thing. As stated earlier, this board is lacking in power,
which is one of the reasons it is being redesigned. If you have the
Nano connected to the tester correctly and the OLED doesn’t
work or it won’t update, you can plug another cable into the
tester’s usb to give it more power. This will not hurt either the
tester or the Nano as this is still delivering 5v it is just adding to
the ability to use more current. It is not a given that you will have
to do this but you might need to.

07/12/2022 25

Adding Chips

The chip database on this tester is set up in a very specific way.
First, each chip has 48 bytes worth of data. That data will start at
a specific address in the eeprom. Because the address for each
chip’s data could start at a number higher than 255 we need to
use two bytes on the eeprom to store the address of each chip’s
data. The first two bytes of the eeprom stores the address of the
first chip’s data. The next two store the address of the second
chip’s data and so on. You do not need to worry about this as the
program will automatically decide where each chip’s data will go.
This is just here to give you an idea of how it functions.

07/12/2022 26

Adding Chips

To store this data, the program needs to know how many chips
there are so whenever you add a chip you need to make sure all
of the following changes are made to the code before you upload
it (or flash it) to the chip tester.

07/12/2022 27

Adding Chips

This is the
database chip
code. Let’s
look at how it
functions.

07/12/2022 28

Adding Chips

● Int tmpNumChips = 17 – This is how many chips there are total. If
you add a chip then this will be changed to 18.

● TmpNameLen[17] = { 0x08, etc….}; - This tells the program how
many characters the chip’s name is. The maximum is 20. You can
use Hex as I have done here or you can simply use a decimal
number. This is an array, thus, you have to change the number 17
to 18 if you add a chip and so on.

● Char tmpName[17][20] = {“2114 RAM”, etc..}; - This is the actual
name of the chip. Remember that the nameLen above needs to
match the number of characters in this name, including spaces.

07/12/2022 29

Adding Chips

This is a 2 dimensional array. The [20] is just there to show the
number of characters there could be in each name. The [17]
shows how many total names there are. If you add a chip you will
need to change 17 to 18 and so on.

● TmpType[17] = { 0x03, etc...}; - This is the type of chip. Each chip
type is a different number. For instance, 0x03 (or 3) is a 2114
RAM chip. It needed it’s own special number because it is
different than most other chips. 1 is 1 bit RAM, 2 is 4 bit RAM etc.
The list is commented out underneath these variables.

07/12/2022 30

Adding Chips

● TmpPins[17] = { 0x12, etc...}; - This is the number of physical pins
on the chip. Here it is written in Hex 0x12 = 18. You can use
decimal numbers if you prefer. Remember again, to change the
[17] to [18] if you add a chip and so on.

● TmpBusSize[17] = {0x08, etc...}; - This is only needed for RAM
chips. It tells the tester how many columns and rows each chip
has. Most chips will have an equal number of columns and rows
(looking at you 2114 ><) So, just look at your datasheet and see
how many pins say A0, A1, etc. etc. That should mean it is an
address pin.

07/12/2022 31

Adding Chips

● TmpPinFunc[17][24] = { 0x1A, etc...}; - This is also a two
dimensional array. The [24] tells use the number of pins (or max
number of pins in reality). The 17 is the number of chips we have.

The way this is setup it goes from pin 1 to the last pin. That last
pin could be pin 16, 18, 14. It doesn’t matter, we need to add all
chips in the same manner. Each pin function has a number
assigned to it. See the appendix or the comment in the code to
see what each number represents. In order to tell the tester what
each pin does we need to give them in order but not when we are
talking about the right side of the chip.

07/12/2022 32

Adding Chips

For example: If we have a 14 pin chip we will have 7 pins on the
left side. It will go from pin 1 to pin 7 (or 0 to 6 in our code). We
need to look at the data sheet for the chip we want to add and see
what each pin does. Let’s say for instance, pin 1 is GND. Well,
GND is 0x02 so we’d put 0x02 in the first spot like this {0x02, ..}

then we’d add the code for pin 2 after the comma. After pin 7
though we will stop and add 0x00 all the way up until there are
only 7 spots left out of the 24 then we would start at pin 8 and
complete the list of functions. That is why for each pin function
array you will see multiple 0x00 in the middle. These are pins
unused from the ZIF socket.

07/12/2022 33

Adding Chips

So, the last pin of our chip will be pin 24 of the ZIF socket.
Therefore we acknowledge that by making function 24 equal our
last pin function and so forth.

It’s not as complicated as it might seem but this is just here in
case you’d like to add another or more chips. There are still 17
chips it tests from the outset.

07/12/2022 34

Current Chips

● 2114 RAM
● 4464 RAM
● 41256 RAM
● 41257 RAM
● 44256 RAM
● 44258 RAM
● 74xx00
● 74xx02

07/12/2022 35

Current Chips

● 74xx04
● 74xx06
● 74xx08
● 74xx14
● 74xx32
● 74xx86
● 74xx165
● 74xx373

07/12/2022 36

Current Chips

● 74xx595

07/12/2022 37

Chip Type Codes

● 0x01 – 1 bit RAM
● 0x02 – 4 bit RAM
● 0x03 – 2114 RAM
● 0x04 – Hex Inverter
● 0x05 – Serial In Shift Register
● 0x06 – NAND Gate
● 0x07 – NOR Gate
● 0x08 – AND Gate

07/12/2022 38

Chip Type Codes

● 0x09 – OR Gate
● 0x0A – XOR Gate
● 0x0B – Parallel In Shift Register
● 0x0C – Flip Flop

07/12/2022 39

Pin Function Codes

● 1 – VCC
● 2 – GND
● 4 – !CS
● 5 – !WE
● 6 - !CAS
● 7 - !RAS
● 8 – Data In
● 9 – Data Out

07/12/2022 40

Pin Function Codes

● 10 – !OE
● 11 – DQ1
● 12 – DQ2
● 13 – DQ3
● 14 – DQ4
● 15 – N/C
● 20 – A0
● 21 – A1

07/12/2022 41

Pin Function Codes

● 22 – A2
● 23 – A3
● 24 – A4
● 25 – A5
● 26 – A6
● 27 – A7
● 28 – A8
● 29 – A9

07/12/2022 42

Pin Function Codes

● 30 – A1 (Inverter)
● 31 – Y1 (Inverter)
● 32 – A2 (Inverter)
● 33 – Y2 (Inverter)
● 34 – A3 (Inverter)
● 35 – Y3 (Inverter)
● 36 – A4 (Inverter)
● 37 – Y4 (Inverter)

07/12/2022 43

Pin Function Codes

● 38 – A5 (Inverter)
● 39 – Y5 (Inverter)
● 40 – A6 (Inverter)
● 41 – Y6 (Inverter)
● 42 – A (Shift Register)
● 43 – B (Shift Register)
● 44 – C (Shift Register)
● 45 – D (Shift Register)

07/12/2022 44

Pin Function Codes

● 46 – E (Shift Register)
● 47 – F (Shift Register)
● 48 – G (Shift Register)
● 49 – H (Shift Register)
● 50 – Serial In
● 51 – RCLK
● 52 - SRCLK

07/12/2022 45

Pin Function Codes

● 53 – !SRCLR (Shift Register)
● 54 – Serial Out (Shift Register)
● 55 – SH!LD (Shift Register)
● 56 – CLK (Shift Register)
● 57 – CLK INH (Shift Register)
● 58 – !Serial Out
● 60 – A1 (Logic Gate)
● 61 – B1 (Logic Gate)

07/12/2022 46

Pin Function Codes

● 62 – Y1 (Logic Gate)
● 63 – A2 (Logic Gate)
● 64 – B2 (Logic Gate)
● 65 – Y2 (Logic Gate)
● 66 – A3 (Logic Gate)
● 67 – B3 (Logic Gate)
● 68 – Y3 (Logic Gate)
● 69 – A4 (Logic Gate)

07/12/2022 47

Pin Function Codes

● 70 – B4 (Logic Gate)
● 71 – Y4 (Logic Gate)
● 80 – D0 (Latch)
● 81 – D1 (Latch)
● 82 – D2 (Latch)
● 83 – D3 (Latch)
● 84 – D4 (Latch)
● 85 – D5 (Latch)

07/12/2022 48

Pin Function Codes

● 86 – D6 (Latch)
● 87 – D7 (Latch)
● 88 – O0 (Latch)
● 89 – O1 (Latch)
● 90 – O2 (Latch)
● 91 – O3 (Latch)
● 92 – O4 (Latch)
● 93 – O5 (Latch)

07/12/2022 49

Pin Function Codes

● 94 – O6 (Latch)
● 95 – O7 (Latch)
● 96 – Latch Enable (Latch)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

